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Abstract

This paper presents the results of measurements and numerical predictions of turbulent cross-flow in a staggered tube bundle. The
bundle consists of transverse and longitudinal pitch-to-diameter ratios of 3.8 and 2.1, respectively. The experiments were conducted using
a particle image velocimetry technique, in a flow of water in a channel at a Reynolds number of 9300 based on the inlet velocity and the
tube diameter. A commercial CFD code, ANSYS CFX V10.0, is used to predict the turbulent flow in the bundle. The steady and iso-
thermal Reynolds–Averaged Navier–Stokes (RANS) equations were used to predict the turbulent flow using each of the following four
turbulence models: a k-epsilon, a standard k-omega, a k-omega-based shear stress transport, and an epsilon-based second moment clo-
sure. The epsilon-based models used a scalable wall function and the omega-based models used a wall treatment that switches automat-
ically between low-Reynolds and standard wall function formulations.

The experimental results revealed extremely high levels of turbulence production by the normal stresses, as well as regions of negative tur-
bulence production. The convective transport by mean flow and turbulent diffusion were observed to be significantly higher than in classical
turbulent boundary layers. As a result, turbulence production is generally not in equilibrium with its dissipation rate. In spite of these char-
acteristics, it was observed that the Reynolds normal stresses approximated from the k-based two-equation models were in a closer agreement
with experiments than values obtained from the second moment closure. The results show that none of the turbulence models was able to con-
sistently reproduce the mean and turbulent quantities reasonably well. The omega-based models predicted the mean velocities better in the
developing region while the epsilon-based models gave better results in the region where the flow is becoming spatially periodic.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Cross-flow in tube bundles has wide practical applica-
tions in the design of heat exchangers, in flow across over-
head cables, and in cooling systems for nuclear power
plants. For these reasons, numerous measurements of tur-
bulent cross-flow in tube bundles have been made to
advance a physical understanding of such flows. Correla-
tions have also been developed for predicting pressure drop
and heat transfer parameters in cross-flow in tube bundles.
Balabani (1996) and Paul et al. (2007) presented compre-
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hensive reviews of earlier relevant studies which are not
repeated here. The literature reveals that extensive mea-
surements of the mean velocities and Reynolds stresses
have been made using hot-wire, LDA and PIV methods.
Measurements of the triple correlations and the various
terms in transport equations for the turbulent kinetic
energy and Reynolds stresses, however, have not yet been
reported.

The ability to correctly predict complex turbulent flows
is fundamental to the design of many fluid engineering sys-
tems. Considerable efforts have been made in the develop-
ment of turbulence models of varying complexity. Hwang
and Jaw (1998), Hanjalic (1994), Gatski and Rumsey
(2002) and Leschziner (2006), for example, presented dis-
cussion on various aspects of turbulence modeling and
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Nomenclature

Ck convection term in the turbulent kinetic energy
budget [m2 s�3]

d tube diameter [m]
Dk viscous diffusion term in the turbulent kinetic

energy budget [m2 s�3]
k turbulent kinetic energy [m2 s�2]
Lds downstream length (Fig. 4a) [m]
lr recirculation length [m]
Lus upstream length (Fig. 4a) [m]
Nx number of grid points in x-direction
Ny number of grid points in y-direction
P pressure [N m�2]
Pk production term in the turbulent kinetic energy

budget [m2 s�3]
rx x-direction geometric grid expansion and con-

traction factor
ry y-direction geometric grid expansion and con-

traction factor
Re1 Reynolds number based on the inlet velocity

(=U1 d/m)
SL longitudinal pitch [m]
S�L longitudinal pitch-to-diameter ratio (=SL/d)
ST transverse pitch [m]
S�T transverse pitch-to-diameter ratio (=ST/d)
U x-direction mean velocity component [m s�1]
U1 approach velocity [m s�1]
us friction velocity (=(sw/q)0.5) [m s�1]
u0 x-direction velocity fluctuation [m s�1]
u2 Reynolds normal stress along the x-axis [m2 s�2]
�uv Reynolds shear stress [m2 s�2]
u3

v3

u2v
uv2

9>>=
>>; triple correlations of fluctuating velocity compo-

nents [m3 s�3]

V y-direction mean velocity component [m s�1]
v0 y-direction velocity fluctuation [m s�1]
v2 Reynolds normal stress along the y-axis [m2 s�2]

W z-direction mean velocity component [m s�1]
w0 z-direction velocity fluctuation [m s�1]
x streamwise coordinate [m]
y transverse coordinate [m]
y+ non-dimensional distance from the wall (=Dyus/

m)
Dy first grid spacing near a wall [m]
z span-wise coordinate [m]

Greek symbols
e turbulent dissipation rate [m2 s�3]
ek dissipation term in the turbulent kinetic energy

budget [m2 s�3]
l fluid dynamic viscosity [N s m�2]
lt turbulent eddy viscosity [N s m�2]
m kinematic viscosity [m2 s�1]
Pk convective diffusion term in the turbulent kinetic

energy budget [m2 s�3]
q fluid density [kg m�3]
sw wall shear stress [N m�2]
g Kolmogorov length scale [lm]
x specific dissipation rate [s�1]

Acronyms

2D two-dimensional
3D three-dimensional
CFD computational fluid dynamics
DNS direct numerical simulation
LDA laser Doppler anemometry
LES large eddy simulation
LRR-IP Launder, Reece and Rodi isotropisation of

production
PIV particle image velocimetry
SGS sub-grid-scale
SST shear stress transport
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their applications. The sophistication of turbulence models
can vary from the simple algebraic models (e.g. mixing
length models), through two-equation eddy-viscosity mod-
els, to second moment closures, which solve transport
equations for the Reynolds stresses. Detailed descriptions
of the various turbulence models can be found in Hanjalic
(1994) and Pope (2000).

The prediction of turbulent cross-flow in a tube bundle
was the subject of an international symposium on turbu-
lence modeling (Leschziner and Launder, 1993). It is recog-
nized, however, that this flow still poses a challenge to
turbulence modeling (Hanjalic, 1994). Several fluid flow
and heat transfer simulations in tube bundles which focus
on turbulent flows have been reported. Table 1 summarizes
some of the pertinent numerical studies of turbulent flow
through tube bundles. Simonin and Barcouda (1988) per-
formed experimental and numerical studies of turbulent
cross-flow in a tube bundle. The measurements were made
using an LDA technique. The transverse and longitudinal
pitch-to-diameter ratios, S�T and S�L, were 2.074 and 1.037,
respectively. For the numerical study, they used a k–e
model to predict the mean velocities and turbulent kinetic
energy. It was reported that the predicted mean velocities
were in good agreement with the measured values. Signifi-
cant discrepancies exist, however, between the measured
and predicted turbulent kinetic energy. Balabani et al.
(1994) employed an LDA technique to measure mean
velocities and turbulent intensities in a staggered tube bun-
dle. The measured data were compared with the predic-
tions using a standard k–e turbulence model with and



Table 1
Summary of previous numerical studies

Author(s) Model(s) Reynolds number Data used

Simonin and Barcouda (1988) k–e Re1 = 18,000 Simonin and Barcouda (1988), experimental data
Balabani et al. (1994) k–e Remax = 12,858 Balabani et al. (1994)
Meyer (1994) Standard k–e LRR-IP wall function Remax = 32,000 Meyer (1994)
Bouris and Bergeles (1999) LES- (sub-grid scale) Remax = 12,858 Balabani et al. (1994)
Watterson et al. (1999) Low-Reynolds k–e Re1 = 21,000 Simonin and Barcouda (1988), experimental data
Rollet-Miet et al. (1999) LES-Smagorinsky Remax = 40,000 Simonin and Barcouda (1988), experimental data
Benhamadouche and Laurence (2003) LES and transient RANS Reb = 9000 Simonin and Barcouda (1988), experimental data
Moulinec et al. (2004) 3-D DNS Re1 = 6000 Simonin and Barcouda (1988), experimental data
Hassan and Barsamian (2004) LES -3D Re1 = 21,700 Simonin and Barcouda (1988), experimental data

All studies except Meyer (1994) used in-house codes; Meyer (1994) used a commercial CFD code. In-house implies that the code was developed as part of
the non-commercial research work of the author(s).
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without a curvature modification. Bouris and Bergeles
(1999) used an LES approach with the Smagorinsky SGS
model to predict the experiments of Balabani et al. (1994)
In both studies, they obtained good agreement with the
experimental results. The mean velocity profile, however,
showed slight discrepancy in the flow recirculation regions.
Meyer (1994) employed LDA to measure two-dimensional
mean velocities and Reynolds stresses in two successive
rows in the middle of a tube bundle. The measured values
were compared with predictions using both a standard k–e
model and the second moment closure proposed by Laun-
der et al. (1975), termed LRR-IP, with a wall function in its
steady formulation. They found that both models were
unable to give good predictions of the flow. Numerical pre-
dictions of the Simonin and Barcouda experiment in a typ-
ical inter-tube region in which spatial periodicity has been
established were made by Watterson et al. (1999), Rollet-
Miet et al. (1999), Benhamadouche and Laurence (2003)
and Hassan and Barsamian (2004). Watterson et al.
(1999) used a low-Reynolds number k–e model. For their
comparisons, they modelled flow with a Reynolds number
of 21,000 based on the approach velocity. It was reported
that the predicted mean values were in good agreement
and the Reynolds stresses showed encouraging agreement
with the measured values. Rollet-Miet et al. (1999)
employed LES and a k–e model. They reported that the
mean velocity profiles were well predicted in the two cases.
In the wake region, however, the k–e model gave poorer
prediction of the Reynolds stresses than the LES. Benha-
madouche and Laurence (2003) employed LES, coarse
LES, and transient Reynolds stress transport models in
2D and 3D, with two levels of grid refinement. For their
comparisons, they modeled flow with a Reynolds number
of 9000 based on the bulk velocity (based on the inlet vol-
ume flow rate and cross-sectional area) and tube diameter.
They reported that the LES with the fine mesh are compa-
rable to the experiments. The results from the coarse LES
were also in a reasonable agreement with the measured val-
ues. Hassan and Barsamian (2004) used LES and observed
good agreement with the measured mean flow and Rey-
nolds stresses. Paul et al. (2004) used a low-Reynolds num-
ber k–e model, a k–x model, and an e-based second
moment closure model to predict flow in the typical section
of the experiments of both Simonin and Barcouda (1988)
and Balabani (1996). They reported that k–e and k–x mod-
els give better predictions of the mean flow in a region just
before and after a tube than a second moment closure
(LRR-IP) model. It is important to note that the second
moment closure did not produce consistently good predic-
tions of the Reynolds stresses. Recently, Moulinec et al.
(2004) used 3D DNS to predict the experiments of Simonin
and Barcouda. The Navier–Stokes equations were discret-
ized on a staggered Cartesian grid with the help of a finite
volume approach. For their comparisons, they performed
the simulation of the flow with a Reynolds number of
6000 based on the bulk velocity and tube diameter. Overall,
they reported that their predictions were in good agreement
with those of the experiments. In our previous paper (Paul
et al., 2007), we reported comprehensive planar PIV mea-
surements in a staggered tube bundle at three Reynolds
numbers. The mean velocities, turbulent intensities, Rey-
nolds stresses and terms in the Reynolds Averaged Navier
Stokes equations were presented and discussed in detail.

The first objective of the present study is to perform
detailed assessment of the ability of the commercial CFD
code, ANSYS CFX, together with four different turbulence
models in their steady state formulations, k–e, k–x, SST,
and LRR-IP, to reproduce the mean flow and turbulent
quantities in a staggered tube bundle. As is well known,
turbulent flow in tube bundles is generally characterized
by significant three-dimensional flow structures and highly
fluctuating wake regions with vortex shedding. Consistent
with some of the previous studies, however, a two-dimen-
sional steady state simplification has been chosen for the
numerical studies. The second objective is to present, for
the first time, some of the terms in the transport equations
for the turbulent kinetic energy and Reynolds stresses
obtained from the PIV measurements to provide insight
into turbulence production and transport mechanisms in
tube bundles.

2. Experimental set-up and measurement procedure

The set-up and measurement procedure is the same as in
Paul et al. (2007), so only a summary is provided here. The
experiments were performed in a recirculation type water
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tunnel with a test section of 200 mm wide, 200 mm deep
and 2500 mm long. A contraction with a six-to-one area
ratio and a symmetrical cross-section is used to reduce
the turbulence intensity by accelerating the mean flow.
The test section was fabricated using clear acrylic to facil-
itate optical access. Fig. 1a shows a sectional side-view of
the tube bundle model used. The bundle consists of 6 rows
of tubes of outer diameter of 25.4 mm arranged in stag-
gered array. As shown in the figure, each row has 1 or 2 full
tubes. Half tubes were also mounted along the top and bot-
tom walls of the test model alternately to simulate an infi-
nite tube bundle and minimize the wall boundary layer.
The transverse and longitudinal pitch-to-diameter ratios,
S�T and S�L, were 3.8 and 2.1, respectively. The length-to-
diameter ratio of the rods was 7.5. This is higher than 7.2
used by Balabani et al. (1994), who considered measure-
ments at the mid-span to be free from end effects. Indeed,
data presented in Paul et al. (2007) clearly demonstrate that
the mean flow is two-dimensional in the mid-plane of the
channel. Also shown in Fig. 1 are the key geometrical
parameters of the tube bundle model used. The origin of
the coordinate system is defined to be at the center of the
middle tube in the first row. Here, the streamwise and
transverse directions are denoted by x and y, respectively.
The z-axis (span-wise), not shown, is assigned to the direc-
tion pointing out of the paper. The experiments reported in
the present study were performed at a Reynolds number of
25
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at which results are presented: x/d = 0.85, 1.25, 2.95, 3.35, 5.05, 5.45, 7.15 an
9300. This value is based on the tube diameter
(d = 25.4 mm) and approach velocity in the water tunnel
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normalized by the tube diameter.

The flow was seeded with polyamide seeding particles
having mean diameter of 5 lm and specific gravity of
1.03. A 120 mJ/pulse Nd-YAG laser was used to illuminate
the flow field, and the images were acquired using a 2048
pixel � 2048 pixel CCD camera. The acquired images were
interrogated using adaptive correlation analyses and a
moving average validation scheme. Preliminary measure-
ments were conducted to determine the sample size
required to achieve statistically converged results for the
mean flow and turbulence statistics. Based on the results,
a sample size of 2400 was used to compute those statistics
in this work. It should be mentioned that the experimental
results presented subsequently were not frequency filtered
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velocity is uniform across the central 70% of the channel
with a boundary layer thickness of 34 mm. The streamwise
and transverse turbulence intensities in the central portion
of the channel were 4% and 3%, respectively. A detailed
description of the uncertainty analyses of the present study
can be found in Paul et al. (2007). The measurement uncer-
tainty at 95% confidence level in mean velocities, turbu-
lence intensities, and Reynolds stresses are estimated to
be ±3%, ±7%, and ±10%, respectively. Close to the tubes,
uncertainties in mean velocities and Reynolds stresses are
estimated to be ±5% and ±12.5%, respectively. The uncer-
tainties in the first derivatives are of the order of ±15%.
When present in some graphs, error bars are used to indi-
cate measurement uncertainty at 95% confidence level.
2.1. Spatial resolution

The influence of spatial resolution on the mean and the
fluctuating components in turbulent flows has been studied
using PIV by Lecordier et al. (2001) and Fouras and Soria
(1998). These studies revealed that when the interrogation
area size becomes larger, the PIV tends to underestimate
the velocity fluctuations. Saarenrinne and Piirto (2000)
and Piirto et al. (2003) employed PIV to estimate the dissi-
pation rate downstream of a backward facing step. They
reported that the best estimate for the dissipation rate is
achieved when the spatial resolution is close to the Kol-
mogorov length scale and the velocity measurement error
is kept small. They suggested that the spatial distance
between the adjacent vectors should be at a distance
shorter than the Kolmogorov length scale given by
g = (m3/e)1/4, where m is the kinematic viscosity and e is
the dissipation rate, given by e = A(u3/L), where A is a con-
stant and has a value of order one, u is the turbulence level
in the main flow direction, and L is on the order of the inte-
gral length scale.

In order to evaluate any effects of spatial resolution on
the mean velocities, Reynolds stresses, triple correlations
and some of the terms in the transport equation for the tur-
bulent kinetic energy, the acquired images were processed
using 32 � 32 pixels and 32 � 16 pixels, both with 50%
overlap. The corresponding physical spacing between vec-
tors or data points is, respectively, 1.56 mm � 1.56 mm
and 1.56 mm � 0.78 mm. The exact equation for the turbu-
lent kinetic energy, k, can be found in Hinze (1975):
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The term on the left side is the time rate of change of ki-
netic energy, Ck is the convective transport, Pk is the con-
vective diffusion, Pk is the production, Dk is the viscous
diffusion, and ek is the viscous dissipation. It should be
noted that a planar PIV cannot measure all the compo-
nents in the various terms in Eq. (1). Therefore, only the
components that can be measured directly or approxi-
mated from measured values are retained in the production
(Pk), dissipation (ek) and convective (Ck) terms in Eqs. (2)–
(4):
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Eq. (3) is identical to that employed by Piirto et al. (2003)
in their PIV study of a backward facing step. Because the
spanwise velocity was not measured, the last term in the
expression for ek was estimated from the continuity equa-
tion for the fluctuating velocity components as follows:
ðow=ozÞ2 ¼ ðou=oxþ ov=oyÞðou=oxþ ov=oyÞ. It is impor-
tant to note that the first two terms on the right hand side
of Eq. (2) consist of the contributions from normal stresses,
and the last two consist of the contribution from the shear
stress. All velocity derivatives in this study were estimated
using a second order central differencing.

Paul et al. (2007) classified this flow into a developing
region for x/d 6 3.35 and a developed (spatially periodic)
region for x/d P 5.05. Therefore, profiles at x/d = 3.35
and x/d = 5.45 were chosen as typical locations at which
to study the effects of spatial resolution. Fig. 2 shows pro-
files of the streamwise mean velocity, turbulent intensities,
Reynolds shear stress, and triple correlations for both
interrogation area sizes. The figure reveals that at
x/d = 5.45, the various profiles collapse reasonably well,
except for u3. It is also observed that the slight variations
in the profiles of turbulent intensities (i.e., 1.3 6
y/d 6 2.6) at x/d = 3.35 (Fig. 2b and c), are within mea-
surement error. However, at x/d = 3.35 (Fig. 2e), scatter
in u3 precludes any accurate assessment of spatial resolu-
tion. It is thought that the scatter might be due to shadows
caused by the difference in refractive index between the
acrylic tubes and the water. Overall, the results imply that
there is no significant effect of spatial resolution in regions
where significant shadows were not present.

Fig. 3 shows profiles of the production, dissipation, and
convection terms in the turbulent kinetic energy budget. All
terms are non-dimensionalized by U 3

1=d. Fig. 3a and c
reveal that at x/d = 5.45, the profiles of the production
and convection terms show no significant effects of spatial
resolution. However, slight variation is observed in the
profiles of the production term in the recirculation region
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at x/d = 3.35 (1.3 6 y/d 6 2.5, approximately). It is noticed
that the profiles of the dissipation term in Fig. 3b shows
significant variation at the two x/d locations. This is
because the rate of turbulence dissipation occurs at the
smallest scales. It should be noted that the spatial resolu-
tion or spacing between data points is limited to
0.78 mm, which is much larger than the Kolmogorov
length scale, estimated to be g = 30 lm. Although the pres-
ent spatial resolution is above the scale expected to pre-
cisely measure the dissipation rate, profiles of dissipation
rate will be presented to qualitatively show how it varies
within the tube bundle. All the results presented subse-
quently are those obtained from the smaller (32 � 16 pix-
els) interrogation area size because it is believed that the
dissipation rate obtained from this particular interrogation
area is closer to the true values.
3. Numerical modeling

Problem definition: The geometry of the two-dimen-
sional domain representing a typical region in a bundle
with tube diameter d, transverse pitch, ST, and longitudinal
pitch, SL, is shown in Fig. 4a. Fluid with an approach
velocity, U1, enters the solution domain uniformly at the
inlet region, a distance Lus from the center of the first tube.
The outlet section is placed a distance Lds from the center
of the last tube. The values of Lus and Lds are taken to be
10 d and 10 d, respectively. These values were chosen so
that their location did not have a significant impact on
the solutions obtained. The full number of tubes in the
present experimental study is modeled and, due to symme-
try, the computational domain is half of the experimental
domain.
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3.1. Computational mesh

Structured, non-orthogonal, non-uniform, boundary-fit-
ted grids were generated for the solution domain shown in
Fig. 4a. All the structured grids used were generated using
TASCgrid, the grid generation component of CFX-TASC-
flow v2.12, and then imported into ANSYS CFX. The grid
generation software uses transfinite interpolation to
compute the mesh. The grids were created on a region-
by-region basis, and then attached together as needed.
Rectangular sections were generated for the upstream
and downstream sections, and five different inter-tube
region grids were created. Based on a coarse grid example,
the assembly of the grid in the tube bundle region for the
domain modeled is shown in Fig. 4b. Fig. 4c is a sample
grid detail (coarse mesh) of the section indicated in
Fig. 4b. Grid refinement near the tube surfaces and the wall
was achieved by using a geometric grid expansion and con-
traction factor.

3.2. Governing equations

The flow is considered to be two-dimensional, incom-
pressible, isothermal, steady, and turbulent. The fluid is
Newtonian with constant density, q, and dynamic viscos-
ity, l. The Reynolds Averaged Navier–Stokes (RANS)
equations for continuity and momentum conservation
can be written as

oU j

oxj
¼ 0 ð5Þ

o

oxj
ðqU jU iÞ ¼ �

oP
oxi
þ o

oxj
l

oUi

oxj
� quiuj

� �
ð6Þ

where uiuj is the Reynolds stress tensor. The mean flow
pressure is P, and the mean velocity component in the xi

direction is Ui. The turbulence models used to compute
the Reynolds stress tensor are discussed below.

3.3. Turbulence models

The four turbulence models used in this study are three
two-equation models and one Reynolds stress model. The
two-equation models are the k–e developed by Launder
and Spalding (1994), the k–x by Wilcox (1988) and the
shear stress transport (SST) k–x based model developed
by Menter (1994). The Reynolds stress model is the e-based
second moment closure model developed by Launder et al.
(1975). These models will be referred to hereafter as k–e,
k–x, SST, and LRR-IP, respectively. The two-equation
models assumed eddy–viscosity relationship for the Rey-
nolds stresses in Eq. (6), given by

�quiuj ¼ lt
oUi

oxj
þ oU j

oxi

� �
� 2

3
qdijk ð7Þ

where lt is the eddy viscosity and dij is the Kronecker delta.
The pressure includes 2

3
qdijk coming from the Reynolds
stresses. The transport equations and auxiliary relations
of the two-equation models are shown in Table 2. Table
3 shows the details of the Reynolds Stress model.
3.4. Boundary conditions

The boundary conditions for the solution domain
shown in Fig. 4b are as follows. At the inlet, an average
upstream value of the mean velocity equal to the approach
velocity, U1 = 0.34 m/s obtained from measurement is
specified along with V = 0. It is noted that the boundary
layer thickness in the measured data is significant; however,
a uniform approach is used for simplicity. In addition, at
the inlet the relative turbulence intensity, based on the
experimental data, is set equal to 4%. ANSYS CFX
V10.0 computes the dissipation rate from turbulent viscos-
ity ratio (lt/l) using e = Clqk2/lt and lt/l = 1000I, where
I is the turbulence intensity. On the constant y surface at
y = 0, a symmetry boundary condition was applied. A sta-
tionary wall (no-slip) boundary condition was prescribed
on the constant y surface at y = ST and at the arc-shaped
boundaries representing the tube surfaces. In the k–e and
LRR-IP models, a scalable wall function approach is used
for the near-wall treatment. The fundamental principle of
the scalable wall function approach used in CFX (Grotjans
and Menter, 1998), is to limit the y+ value used in the log-
arithmic formulation by a lower value of ~yþ ¼
maxðyþ; 11:06Þ, where 11.06 is the intersection of the loga-
rithmic and linear near wall profiles. The computed ~yþ

value is not allowed to fall below this limit, therefore, all
mesh points are outside of the viscous sublayer and all fine
mesh inconsistencies are avoided. The flux boundary con-
ditions applied at the wall for the scalable wall-function
approach used in CFX are as follows:

lt
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on
¼ �qus maxðjusj; u�Þ ð8Þ
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¼ 0 ð9Þ

ls

re

oe
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¼ � 1

re
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2þ 2e
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þ F cal

e
2

re

ffiffiffiffiffiffi
Cl

p
j2

ðCe2 � Ce1Þ ð10Þ

with e ¼ Dyþ

~yþ
ð11Þ

and u� ¼ C1=4
l k1=2 ð12Þ

Here Dy+ is the actual y+ value from the wall to the first
interior node, Fcal is a calibration function based on the
coarseness of the mesh, and u* is an alternative velocity
scale used to prevent the flux from going to zero at separa-
tion points (as was a problem with standard wall-func-
tions). A near-wall treatment that switches automatically,
based on grid refinement, from wall function to low-Rey-
nolds number formulation is employed for k–x and SST
models. These sets of wall treatments were the only avail-



Table 2
Transport equations and auxiliary relations of the two-equation models

Model equation Closure coefficients and auxiliary relations

k–e model
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Production term, Pk, is for all models:
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Turbulent viscosity
For k–e: lt = qClk2/e
For k–x: lt = q(k/x)
For SST: lt ¼ qa1k
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For SST: The blending function, F1, is given by:
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Constants:
For k–e:Ce1 = 1.44, Ce2 = 1.92, rk = 1.0, re = 1.3, Cl = 0.09
For k–x: b* = 0.09, b = 0.075, a = 5/9, rx = 2, rk = 2
For SST: a2 = 0.44, rx2 = 10.856, rk2 = 1, b2 = 0.0828, b* = 0.09, a1 = 0.31

Table 3
Transport equations and auxiliary relations of the Reynolds stress model

Reynolds stress model (LRR-IP)
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The pressure–strain term,/ij, is modeled using:

/ij ¼ �qeCs1aij þ Cr2qkSij þ Cr4qk aikSjk þ ajkSik �
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3
aklSkldij
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Constants:
Cs = 0.22, Cs1 = 1.8,
Cr2 = 0.8, Cr4 = 0.6,
Cr5 = 0.6, Ce1 = 1.45,
Ce2 = 1.90, re = 1.10
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able choices in the version of ANSYS CFX used. At the
outlet, an outflow condition was prescribed with an aver-
age pressure at the entire outlet area set to a reference value
of zero.
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3.5. Numerical solution

The numerical solution of the governing equations was
obtained using a commercial CFD code: ANSYS CFX
V10.0. In this 3D-code, discretization is done based on a
finite volume approach (Patankar, 1980), but the geometri-
cal representation and integration points are based on a
finite element approach. Mass conservation discretization
was applied on a non-staggered grid with pressure–velocity
coupling based on the work of Rhie and Chow (1983). The
advection term discretization uses a numerical advection
correction which may be viewed as an anti-diffusive flux
added to the upwind scheme. The advection scheme imple-
mented in the version of CFX used can be cast in the form
/ip ¼ /up þ br/ � D~s, where /up is the value at the upwind
node, $/ is the gradient of /, and~s is the vector from the
upwind node to the ip. The second order accurate high res-
olution advection scheme, based on the work of Barth and
Jesperson (1989), was employed in the present study. For
this particular scheme, $/ is the nodal gradient of the
upwind node and b = 1. The discretized mass, momentum
and turbulence model equations were solved iteratively
using an additive correction multi-grid method to acceler-
ate convergence. Double precision was used in the compu-
tations and the solution was considered converged when
the normalized RMS residual of each of the discretized
equations was less than 1.0 � 10�5.

3.6. Mesh-independence tests

Mesh-independence tests were performed to investigate
the influence of grid refinement on the solution and repre-
sentative results are presented here for six of the computa-
tional grids used. Table 4 provides some details of the
grids, including the total number of nodes, the numbers
of nodes in the x- and y-directions, and the y-direction geo-
metric expansion factor. The grid expansion factor, ry, is
the relative increase in grid spacing along the y-direction
in a given grid segment, and was used to investigate the
effect of refinement of the grid near boundaries in addition
to the choice of Ny. In this application, the grid sub-regions
were created before assembly with local y (transverse coor-
dinate) defined in such a way that the grid expands away
from all wall boundaries. A larger value of ry indicates a
Table 4
Details of grids used in mesh-independence tests and their maximum y+ value

Grid Nodes Nx Ny ry k–e

yþmax yþsolver;max

A 32364 522 62 1.2 48.83 14.04
B 72144 1002 172 1.05 7.35 11.06
C 232704 1152 202 1.05 4.90 11.06
D 474888 1684 282 1.05 1.75 11.06
E 119564 842 142 1.2 3.72 11.06
F 202404 1002 202 1.05 4.89 11.06

Because ANSYS CFX is a 3D code, all grids contains three grid points in the sp
no impact on the results. The x-direction grid expansion factor for all grids is
greater rate of increase of grid spacing away from a bound-
ary. For a fixed number of nodes across a region, a larger ry

produces nodes more closely spaced near a boundary, and
a smaller first y-direction spacing near a wall. The set of
grids shown in Table 4 shows a variation of Nx, Ny, and
ry, to assess separately the effect of changes in their values.
Because of the choice of assembling the grid from struc-
tured-grid sub-regions around the tubes, certain choices
of Nx, Ny, and ry produced grids with skew angles and
aspect ratios that led to convergence difficulties. Therefore,
the set of six grids shown in Table 4 is the result of signif-
icant testing to obtain working grids that could be used to
carefully examine grid independence of the solutions. Also
shown in Table 4 are the maximum values in the domain of
the standard y+ and solver y-plus (denoted as yþsolver) values
obtained in post-processing for each of the models for each
of the grids. The solver y-plus is an internally calculated y+

value used in the CFX solver. It should be noted that Grid
A is very coarse and has large yþmax values that are in the
logarithmic region for all four turbulence models. For the
e-based models (k–e and LRR-IP), yþmax is in the viscous
sublayer (y+ < 5) for Grids C, D, E and F. For the x-based
models (k–x and SST), yþmax is also in the viscous sublayer
for Grid D and although the yþmax values for Grids B, C, E
and F are outside the viscous sublayer, they are well below
y+ = 11. Moreover, yþsolver;max values for the e-based models
are clipped to 11.06 as is consistent with the scalable wall
function approach.

Samples of the results in the developing region
(x/d = 1.25) and the spatially periodic region (x/d = 5.45)
from computations using grids A, B, C, and D are shown
in Figs. 5–7. The profiles of U in Fig. 5a to d show that
the k–e and LRR-IP models are not very sensitive to grid
resolution changes beyond a certain resolution; in this case,
for Grid B or finer. This trend is similar for the results for
V and k shown in Figs. 6a–d and 7a–d, respectively. On the
other hand, Fig. 5e–h show that the k–x and SST models
are quite sensitive to grid resolution changes. Not only is
there a large change in results from Grid A to Grid B (as
seen for the k–e and LRR-IP models), there continue to
be changes in the results for Grids C and D at certain loca-
tions. The results in Fig. 5e–h show that the sample U pro-
files are reasonably grid-independent near the symmetry
plane and near the wall for Grids B, C, and D. In the
s

LRR-IP k–x SST

yþmax yþsolver;max yþmax yþsolver;max yþmax yþsolver;max

42.16 12.87 42.71 58.18 39.45 45.87
6.79 11.06 9.05 8.80 9.14 8.90
4.48 11.06 6.59 6.48 6.59 6.43
1.59 11.06 2.62 2.61 2.58 2.57
3.45 11.06 5.25 5.19 5.18 5.13
4.48 11.06 6.59 6.47 6.53 6.43

anwise direction. Symmetry was used in the spanwise direction, so this had
rx = 0.98.
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Fig. 5. Sample profiles of grid-independence test of streamwise mean velocity at x/d = 1.25 and 5.45: (a and b) k–e; (c and d) LRR-IP; (e and f) k–x; and
(g and h) SST.
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region around the two velocity peaks (0.5 < y/d < 3.0),
however, there is a much greater sensitivity to changes in
the grid resolution. These results indicate that grid refine-
ment is needed not only near the wall, but also in the region
between tubes. The profiles of V and k for the k–x and SST
models, shown in Figs. 6e–h and 7e–h, respectively, are
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consistent with these observations. It was also observed
that there tends to be greater changes with grid resolution
in the k–x and SST model results at x/d = 5.45 than at x/

d = 1.25.
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Table 5 is a summary of representative values of the per-
centage deviations for results obtained using Grids A, B
and D compared with the results from Grid C. When com-
piling the data for Table 5, it was recognized that there
were two cases where percentage differences may be mis-
leading. The first case occurred when field values were near



Table 5
Details of maximum deviations for present results using various meshes

Model Grid Maximum percent difference with respect to Grid C y/d locations of maximum difference

U V k U V k

x/d = 1.25

k–e A �1.86 �4.43 38.22 3.00 0.50 3.64
B �0.25 �0.90 1.45 2.96 0.50 3.64
D 0.22 0.52 �2.33 2.93 0.50 0.09

LRR-IP A 6.32 24.19 82.38 2.99 0.50 0.07
B 0.72 2.46 5.70 0.50 0.50 0.07
D �1.52 �3.92 �4.49 0.50 0.50 0.07

k–x A 26.39 36.24 93.72 0.55 0.52 0.39
B 2.94 5.78 7.31 0.61 3.00 3.42
D 2.47 �6.19 �6.09 0.50 0.59 3.42

SST A 21.17 35.69 89.70 0.55 0.52 3.40
B 2.23 4.48 7.19 0.58 0.61 3.40
D �1.77 �4.57 �4.35 0.59 0.59 3.40

x/d = 5.45

k–e A �6.89 �4.97 30.04 2.30 1.47 3.59
B �0.86 �0.71 1.54 0.50 0.50 3.59
D 0.94 0.93 �3.36 0.51 1.41 1.66

LRR-IP A 8.25 15.61 67.50 0.50 0.50 0.15
B 0.50 �0.41 0.88 1.54 1.60 3.59
D �1.12 1.61 �2.10 0.59 1.60 3.59

k–x A �36.64 �180.53 89.39 1.60 1.60 1.57
B �26.71 �32.96 29.78 0.50 0.50 3.25
D 22.80 24.38 �12.83 0.50 0.50 1.57

SST A 26.36 �63.15 88.17 2.89 2.30 3.25
B �14.72 �6.84 17.85 0.50 0.50 3.25
D 14.44 7.73 �10.45 0.50 0.50 1.55
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zero. The second case occurred in regions where the results
of different grids have very similar predictions of a steep
field gradient, but are shifted slightly in the y-direction rel-
ative to each other (for example, in the region 0.2 <
y/d < 0.5 in Fig. 5f). The slight shift in profiles can cause
very large local percentage differences, even though the
overall predictions are very similar. These two drawbacks
were avoided by restricting the regions over which percent-
age error are reported in Table 5 as follows. For U and V,
the regions considered for Table 5 data were 0.5 6
y/d 6 1.6 and 2.3 6 y/d 6 3.0, and the maximum local per-
centage differences in these ranges are reported in Table 5.
For k, the changes at the locations of the local maxima in
the fields were considered, and the maximum local percent-
age difference is reported for each grid. The data in Table 5,
therefore, are expected to represent fairly the cases where
changes are relatively small between sets of results, and
others where changes are significant. For all percentage
differences in Table 5, the corresponding y/d locations
where these maximum deviations occurred are also
reported. In the following discussion of Table 5 data, the
references to values of percentage difference will imply
the magnitude of the percentage difference. The data in
Table 5 indicate that the representative percentage differ-
ences obtained from k–e and LRR-IP models for Grids B
and D at both x/d locations are less than 4% for U and
V and 6% for k. These comparisons indicate reasonable
mesh independence of the k–e and LRR-IP models for
Grids B, C, and D.
The results for the k–x and SST models, on the other
hand, show somewhat higher differences for Grids B and
D, especially at x/d = 5.45, as mentioned earlier. For U,
the differences at x/d = 1.25 are less than 3%, but at
x/d = 5.45, the differences are in the range 14–27%. It
should be noted, however, that these larger differences at
x/d = 5.45 occurred at the lower limit of the range of con-
sideration (y/d = 0.5) where the overall agreement is rea-
sonable, but the profiles are shifted in y with respect to
each other. For V, the differences are mostly less than about
6% at x/d = 1.25. At x/d = 5.45, the differences for Grids B
and D for the SST model are roughly 7% and 8%, respec-
tively, while those for the k–x model are approximately
33% and 24%. These larger differences arise under the same
conditions as discussed above for U. For the k–x and SST
models, the maximum differences in k at x/d = 1.25 are less
than roughly 7%. At x/d = 5.45, however, the differences
are in the range 11–30%. Given that the relatively higher
deviations from the k–x and SST models are still reasonable
for U and V, and that the larger differences in k occur only
at a few localized areas in the plots, it is believed that Grid C
is fine enough to produce reasonable results.

Finally, comparisons between the results using Grids C,
E, and F in the profiles of U and k at selected x/d locations
were made on the results for the k–e and k–x models, in
order to examine the effects of changes in the y-direction
grid expansion and the x-direction grid resolution. There
were no significant differences in the results for the three
grids. It was therefore observed that reasonable results
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can be obtained when using fewer nodes in the y-direction
provided a larger grid expansion factor is used. Based on
the above results and similar checks in other cases, Grid
C was selected for the present investigation. All the remain-
ing results presented here are based on Grid C.

4. Results and discussion

The prediction for the entire domain in Fig. 4b was per-
formed. However, for the purpose of comparison with
experimental data, only profiles obtained at the selected
x/d locations shown in Fig. 1b are presented. In the presen-
tation of results, the approach velocity, U1, is used to nor-
malize both the mean velocities and the turbulence
quantities.

4.1. Mean velocity

4.1.1. Wake and impact regions
Fig. 8 compares predicted and measured values of the

streamwise mean velocity in regions along the centerline
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(y = 0) just behind tubes 1 and 3 (wake_row1 and
wake_row3) and just in front of tubes 3 and 5 (impac-
t_row3 and impact_row5). The distribution of the stream-
wise component of the mean velocity along the wake center
line provides information about the recovery of the stream-
wise mean velocity as well as the length of the recirculation
zone. Balabani (1996) defined the recirculation length, lr, as
the distance between the tube rear surface and the point of
zero streamwise mean velocity. This corresponds to the dis-
tances between points x/d = 0.5 and 1.5 and between
x/d = 4.7 and 5.4 in curves wake_row1 and wake_row3,
respectively, for the measured values in Fig. 8a and b.
The results indicate that the four turbulence models pre-
dicted the correct trends of the mean velocity profiles in
the recirculation zones, but failed to predict the correct
sizes of the recirculation zones. The k–e model predicts a
too small recirculation length (about 25% of the measured
values in the two wake regions), which is consistent with
the experience of Meyer (1994). The discrepancy might be
attributed to the insensitivity of the standard k–e model
to streamline curvature. At wake_row1, the LRR-IP
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model, which is also an e-based model, underpredicted lr by
about 20%. The two x-based models (SST and k–x), on
the other hand, overpredicted lr by about 20%. At
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els predicted the mean velocity profiles in impact_row3
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fairly well. In impact_row5 (Fig. 8d), results from the k–e
model are in excellent agreement with measured mean
velocity profiles. The LRR-IP model underpredicted by
about 20% but results obtained from the SST and k–x
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models are significantly lower than measured data. It is
clear from Fig. 8 that none of the models used in this study
provides consistently good results in both the wake and
impact regions.
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4.1.2. Constant x/d locations

The distribution of the dimensionless streamwise and trans-
verse mean velocities at selected x/d locations are shown in
0

1

2

3

4

0.00 0.25 0.50 0.75

PIV
  k-ε
  k-ω
  SST
LRR-IP

a
x/d = 0.85

u
2
 /U∞

2

y/d

b

y

0

1

2

3

4

0.00 0.25 0.50 0.75

u
2
 /U∞

2

c
x/d = 2.95

y/d

d

y

0

1

2

3

4

0.00 0.25 0.50 0.75
u

2
 /U∞

2

e
x/d = 5.05

y/d

f

y

0

1

2

3

4

0.00 0.25 0.50 0.75

u
2
 /U∞

2

g
x/d = 7.15

y/d

Fig. 11. Comparison between profiles of streamwise normal stres
Figs. 9 and 10, respectively. Fig. 9 reveals that all the turbu-
lence models produce the correct trends of the streamwise
mean velocity profiles at all x/d locations. However, results
0

1

2

3

4

0.00 0.25 0.50 0.75

x/d = 1.25

/d

u
2
 /U∞

2

0

1

2

3

4

0.00 0.25 0.50 0.75

u
2
 /U∞

2

x/d = 3.35

/d

0

1

2

3

4

0.00 0.25 0.50 0.75
u

2
 /U∞

2

x/d = 5.45

/d

0

1

2

3

4

0.00 0.25 0.50 0.75

u
2
 /U∞

2

h
x/d = 7.45

y/d

ses predicted with measured values at selected x/d locations.



S.S. Paul et al. / Int. J. Heat and Fluid Flow 29 (2008) 387–414 405
from the x-based models appear to be in better agreement
with the experimental data in the flow developing region
(i.e., x/d = 0.85–3.35) while the e-based models perform better
in the spatially periodic region (i.e., x/d P 5.05). This behav-
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than in the central portion of the flow. At these locations,
the numerical results, however, produced similar peak val-
ues perhaps due to the uniform profiles employed at the
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dictions of the streamwise component of the mean
velocity.
4.2. Reynolds stresses

Unlike the LRR-IP model, the k–e, k–x and SST models
do not calculate the individual components of the Rey-
nolds stresses. In the case of the latter models, an assump-
tion of isotropy was applied to estimate the Reynolds
normal stresses from k as follows: u2 = v2 = 2k/3. As dis-
cussed in Paul et al. (2007), the measured values of v2 were
found to be much higher than u2 in most of the flow region,
implying that the turbulence field is not exactly isotropic.
Nonetheless, estimated values of u2 and v2 from the k-based
models and those obtained from the LRR-IP model, which
calculates these quantities from their respective transport
equations, are compared with the experimental data. The
Reynolds shear stresses for the two-equation models are
computed using �uv = mt(oU/oy + oV/ox), where mt = Cl

k2/e and constant Cl = 0.09. Figs. 11 and 12 compare pre-
dicted and measured profiles of u2 and v2, respectively, at
various x/d locations. It is clear from these figures that
all the models significantly underpredicted the measured
Reynolds normal stresses. At some locations, the predicted
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Fig. 14. Profiles of turbulence production by Reynolds s
values are an order of magnitude lower than the measured
values. Although, all the predictions are far from the mea-
sured, surprisingly, the values approximated from the iso-
tropic assumption for the k–e, k–x and SST models are
marginally closer to the measured values than the results
from LRR-IP model. This observation is consistent with
the experience of Meyer (1994) and Balabani et al. (1994).

Fig. 13 compares the measured and predicted profiles of
the Reynolds shear stress at selected x/d locations. The pre-
dicted results, especially those obtained from the k–e, k–x,
and SST models, are in reasonably good agreement with
the experimental data in some regions of the flow. Meyer
(1994) also reported poor Reynolds stresses predictions
from a second moment closure that used a wall function.
As noted earlier, the LES studies by Rollet-Miet et al.
(1999) and Hassan and Barsamian (2004) produced Rey-
nolds stress values that are in good agreement with the
experiment of Simonin and Barcouda (1988).
4.3. Production of turbulent kinetic energy and Reynolds

stresses

For a two-dimensional turbulent flow, the production
terms in u2, v2 and uv are:
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P uu ¼ �u2oU=ox� uvoU=oy ð13Þ
P vv ¼ �v2oV =oy � uvoV =ox ð14Þ
P uv ¼ �u2oV =ox� v2oU=oy ð15Þ

respectively. Similarly, the production term in the turbulent
kinetic energy equation is

P k ¼ ½P k;N � þ ½P k;S � ¼ ½�u2oU=ox� v2oV =oy�
þ ½�uvðoU=oy þ oV =oxÞ� ð16Þ

In classical turbulent flows such as fully developed channel
and zero pressure gradient turbulent boundary layers, all
the mean velocity gradients except oU/oy are identically
zero or negligibly small compared with oU/oy. If these
boundary layer assumptions are invoked, Puv � v2oU/oy,
Puu � uvoU/oy, and Pk � uvoU/oy. In this case Puu = Pk

while Pvv becomes negligibly small. As shown and dis-
cussed in Paul et al. (2007), all the four velocity gradients
are significant in most regions of this tube bundle cross-
flow. In this section, the implications of this observation
to the measured production of Reynolds stresses and tur-
bulent kinetic energy in tube bundles are discussed. Finally,
the measured values are compared with predicted values.

The distributions of u2oU/ox, v2oV/oy, uvoU/oy and
v2oU/oy based on measurement are shown in Fig. 14. Each
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Fig. 15. Profiles of turbulence production by turbulent kine
of these terms is extremely high in the recirculation region
where the shear layer is the largest. It appears that the bulk
of turbulence is produced in the recirculation region and
transported towards the minimum flow cross-sectional
area. The term v2oU/oy is certainly the largest, and explains
the very high levels of �uv reported earlier. In contrast to
classical turbulent boundary layers, the terms u2oU/ox

and v2oV/oy are not negligible compared to uvoU/oy. In
most regions of the flow, the magnitude of u2oU/ox and
v2oV/oy are nearly similar or higher than uvoU/oy. There-
fore, the dynamic importance of u2oU/ox and v2oV/oy can-
not be neglected in turbulent flow in a tube bundle. It is
also important to observe that the magnitude of v2oV/oy

exceeds that of (u2oU/ox + uvoU/oy). This implies that
the production term in v2 exceeds that in u2, and explains
the relatively higher values of v2 than u2. This is also at var-
iance with simple turbulent flows where u2 is typically
higher than v2 because energy from the mean flow is trans-
ferred to u2 and then redistributed to v2.

The profiles of the total production term, Pk, as well as
the contributions of the normal, Pk,N, and shear, Pk,S, com-
ponents as indicated in Eq. (16) are shown in Fig. 15. The
figure reveals that although u2oU/ox and v2oU/oy are indi-
vidually high (Fig. 14), their sum is smaller because they
are of opposite sign. Although Pk,S exceeds Pk,N in most
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of the flow domain, the contribution of Pk,N is not negligi-
ble. In fact, in some local regions within the recirculation
zone (e.g. y/d = 1.5–2.5 at x/d = 5.05 and 5.45), Pk,N > Pk,S
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and the total production, Pk becomes negative. The profiles
of the total production Pk at x/d = 0.85 and 1.25 show
double peak values of approximately �0.1 and 0.1 in the
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recirculation zones. The changes in signs of the peak values
are due to two vortices, similar in size, nearly symmetrical
about the tube’s horizontal center line, and opposite in
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rotational direction, that were formed at these x/d loca-
tions. These peak values are lower in magnitude than those
at other x/d locations. It is also observed that in the region
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where the flow becomes spatially periodic (i.e., x/d P 5.05),
the profiles of Pk have double positive peaks, one in the
recirculation zone and the other in the passage between
rows of tubes. However, at each x/d location, the peak in
the recirculation zone is relatively higher than the corre-
sponding one in the passage between the rows of tubes.
Figs. 14 and 15 clearly demonstrate some important differ-
ences between turbulence production mechanisms in tube
bundles and those observed in simple turbulent boundary
layers. These differences may partly explain the inability
of standard k–e and k–x models to accurately predict tur-
bulent flows in tube bundles.

Fig. 16 compares the measured and predicted profiles of
the production term in the turbulent kinetic energy equa-
tion at selected x/d locations. In general, the turbulence
models predict the trend and peak value at all x/d locations
reasonably well. Although most of the models fail to pre-
dict the exact level of Pk at all y/d locations, all of them
correctly predict the locations of the higher peaks at most
of the x/d locations. None of the models was able to repro-
duce the negative production measured at x/d = 5.05 and
5.45. However, the e-based models provide better predic-
tion in value and trend.

Fig. 17 shows that the dissipation rate profiles, based on
the measured values, reach maxima in the recirculation
regions (where production was also found to be maximum)
0
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Fig. 19. Profiles of convection term in the turbulent kinetic energy bu
and are often much smaller in magnitude outside these
regions. It is also observed from these profiles that the dis-
sipation rate rises from the recirculation region of the first
row to a maximum value in the recirculation region at
x/d = 3.35 (Fig. 17d). This significant increase is not found
in the spatially periodic region (i.e., x/d P 5.05). All the
models predicted higher values than measured. The huge
differences between the predicted and measured values
are partly due to the inability of the PIV to resolve the
small scales which led to an underestimation of the dissipa-
tion rate. It should be noted that agreement between the
experimental data and predictions is better in the develop-
ing region (x/d = 0.85–3.35) than in the spatially periodic
region (x/d = 5.05–7.55). Although the LRR-IP model
results agree best with measured data, it is not possible to
conclude that LRR-IP model performs better because the
measured values are likely underestimated.

5. Triple velocity correlations and convection term of

turbulent kinetic energy

The following four triple correlations were measured: u3,
uv2, u2v, v3. The term u3 represents the transport of u2 in the
streamwise direction while uv2 represents the transport of
the uv in the transverse direction. Similarly, u2v and v3

are associated with the transport of u2 and v2, respectively,
C
k

2.95 3.35

.0 0.5 0.0 0.5 1.0

C
k

7.15 7.55

0.0 0.5 0.0 0.5 1.0

dget at selected x/d locations. The term is normalized by U 3
1=d.
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in the transverse direction. Their gradients, which represent
turbulence diffusion in the transport equations for the tur-
bulent kinetic energy and Reynolds stresses, were evaluated
but they showed significant scatter. It was therefore
decided to present only the triple products instead. The
quantity u3 also showed considerable scatter and is, there-
fore, not reported. The term uv2 is shown in Fig. 18a and b.
The gradient ouv2/oy is associated with the diffusion of
�uv. The sum u2v + v3 is plotted in Fig. 18c and d. Since
the gradient [o(u2v + v3)/oy] is associated with the diffusion
of turbulent kinetic energy in the transverse direction, plot-
ting the sum u2v + v3 is more meaningful than plotting the
individual terms, u2v and v3. Fig. 18a and b show that pro-
files of uv2 have peak values in the recirculation regions but
become negligible at the minimum flow cross-sectional
areas. This implies that most of the Reynolds shear stress
is produced in the recirculation region and diffused into
the minimum cross-sectional areas. Similarly, there is a sig-
nificant diffusion of turbulent kinetic energy from the recir-
culation region (where most of the energy is produced) into
the minimum cross-sectional areas.

The convection of turbulent kinetic energy by the mean
flow was estimated from Eq. (4). This convection term, nor-
malized by U 3

1=d, is plotted in Fig. 19 at various x/d loca-
tions. The x-axis range for the repeated sections in the figure
is 0.0–1.0. It is observed that the peak values of Ck have
their largest values at x/d = 3.35. These maxima occur in
the wake regions. This significant increase was not found
downstream of the third and subsequent rows. Moreover,
the convection term as shown in the figure is predominantly
positive at all x/d locations. It is expected, therefore, that
the convection input of energy appears as a positive contri-
bution in the energy balance at most of the locations.

6. Conclusions

The results of the present experimental and numerical
studies of turbulent cross-flow in a staggered tube bundle
yield the following conclusions:

1. The experimental results reveal that the transverse tur-
bulent intensity is significantly higher than the stream-
wise turbulent intensity. The contribution of the
normal stresses to the production of turbulent kinetic
energy is similar or larger than the shear component in
most regions of the flow. As a result, the net production
becomes negative in some regions of the tube bundle
flow. The levels of turbulence diffusion and convection
terms in the transport equation for the turbulent kinetic
energy are significant, so that the production of turbu-
lent kinetic energy and its dissipation rate are not in
equilibrium, as assumed in many basic eddy viscosity
turbulence models.

2. In spite of these features of turbulent flow in staggered
tube bundles, it was observed that the overall perfor-
mance of the k-based two-equation models appears clo-
ser to the measured data than that of the particular
second moment closure (LRR-IP) used in this study.
For example, the Reynolds normal stresses obtained
from the k-based models are in better agreement with
measured values than those obtained from the second
moment closure model. This might be due to the steady
form used in this work. Comparisons between the
numerical and measured values demonstrate that the
mean velocity profiles were reasonably well predicted
by all the turbulence models. In the tube wake, however,
the LRR-IP model gave better results for the mean
velocity than the other models. At the impact region,
the k–e model predictions of the mean velocity profiles
were seen to be in excellent agreement with the measured
values.

3. For the mesh distributions used in the present work, the
k–e and LRR-IP models showed less sensitivity to
changes in the grid resolution than k–x and SST. A
refinement of the mesh in all areas of the flow (not just
in regions near walls) that may be necessary to overcome
this sensitivity, however, would lead to a significant
number of nodes in an x–y plane. This refinement would
lead to very large numbers of nodes for a 3D computa-
tion. Even in the present work, the computational effort
required for cases using Grid D was significant; due to
the requirement of three nodes in the z-direction, three
identical z-planes were computed with a total number
of nodes greater than 1.4 million.
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